Аннотация к рабочей программе по учебному предмету «Химия» 7 - 9 класс

Нормативные документы

Рабочая программа составлена на основе следующих нормативно-правовых документов:

- 1. Федеральным законом от 29.12.2012 №273 ФЗ «Об образовании в Российской Федерации».
- 2. Приказом Министерства просвещения РФ от 31 мая 2021 г. № 287 «Об утверждении федерального государственного образовательного стандарта основного общего образования».
- 3. Основной общеобразовательной программы основного общего образования ЧОУ СШ «Азимут».
- 4. Учебным планом ЧОУ СШ «Азимут».
- 5. Приказом Министерства просвещения Российской Федерации от 23.12.2020 № 766 «О внесении изменений в федеральный перечень учебников, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность, утвержденный приказом Министерства просвещения Российской Федерации от 20 мая 2020 г. № 254».
- 6. Программы курса химии для 8—9 классов общеобразовательных учреждений (авторы О. С. Габриелян, И. Г. Остроумов, С. А. Сладков).
- 7. Рабочая программа к линии УМК О.С.Габриеляна. Химия 7-9 классы. М, Дрофа, 2017.

Рабочая программа курса химии на уровне основного общего образования предполагает изучение химии на базовом уровне и направлена на овладение обучающимися такими познавательными учебными действиями, как эксперимент, наблюдение, измерение, описание, моделирование, гипотеза, вывод.

В основу курса положены следующие идеи:

- материальное единство и взаимосвязь объектов и явлений природы;
- ведущая роль теоретических знаний для объяснения и прогнозирования химических явлений, оценки их практической значимости;
- взаимосвязь качественной и количественной сторон химических объектов материального мира;
- развитие химической науки и производство химических веществ и материалов для удовлетворения насущных потребностей человека и общества, решения глобальных проблем современности;
- генетическая связь между веществами.
 - Эти идеи реализуются в курсе химии на уровне основного общего образования путём достижения следующих целей:
 - Формирование у обучащихся химической картины мира, как органической части его целостной естественно-научной картины.
 - *Развитие* познавательных интересов, интеллектуальных и творческих способностей учащихся в процессе изучения ими химической науки и её вклада в современный научнотехнический прогресс; формирование важнейших логических операций мышления (анализ, синтез, обобщение, конкретизация, сравнение и др.) в процессе познания системы важнейших понятий, законов и теорий о составе, строении и свойствах химических веществ.
 - Воспитание убеждённости в том, что применение полученных знаний и умений по химии является объективной необходимостью для безопасной работы с веществами и материалами в быту и на производстве.
 - Проектирование и реализация выпускниками основной школы личной образовательной траектории: выбор профиля обучения в старшей школе или профессионального образовательного учреждения.
 - Овладение ключевыми компетенциями: учебно-познавательными, информационными, ценностно-смысловыми, коммуникативными.

Планируемые результаты

Личностными результатами изучения предмета «Химия» в 8-9 классе являются следующие умения:

- осознание единства и целостности окружающего мира, возможности его познаваемости и объяснимости на основе достижений науки;
- постепенное выстраивание собственного целостного мировоззрения: осознание потребности и готовности к самообразованию, в том числе и в рамках самостоятельной деятельности вне школы:
- оценивание жизненных ситуаций с точки зрения безопасного образа жизни и сохранения здоровья;
- оценивание экологического риска взаимоотношений человека и природы;
- формирование экологического мышления: умения оценивать свою деятельность и поступки других людей с точки зрения сохранения окружающей среды.

Метапредметными результатами изучения курса «Химия» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

- самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности;
- выдвигать версии решения проблемы, осознавать конечный результат, выбирать из предложенных и искать самостоятельно средства достижения цели;
- составлять (индивидуально или в группе) план решения проблемы;
- работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно;
- обнаруживать и формулировать учебную проблему под руководством учителя;
- ставить цель деятельности на основе поставленной проблемы и предлагать несколько способов ее достижения;
- самостоятельно анализировать условия достижения цели на основе учёта выделенных учителем ориентиров действия в новом учебном материале;
- планировать ресурсы для достижения цели;
- называть трудности, с которыми столкнулся при решении задачи, и предлагать пути их преодоления/ избегания в дальнейшей деятельности;

Познавательные УУД:

- анализировать, сравнивать, классифицировать и обобщать факты и явления. Выявлять причины и следствия простых явлений.
- осуществлять сравнение, классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;
- строить логическое рассуждение, включающее установление причинно-следственных связей;
- составлять тезисы, различные виды планов (простых, сложных и т.п.);
- уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность;
- осуществляет расширенный поиск информации с использованием ресурсов библиотек и Интернета.
- считывает информацию, представленную с использованием ранее неизвестных знаков (символов) при наличии источника, содержащего их толкование;
- участвует в проектно- исследовательской деятельности;
- проводит наблюдение и эксперимент под руководством учителя;

- устанавливает причинно-следственные связи;
- объясняет явления, процессы, связи и отношения, выявляемые в ходе исследования;
- самостоятельно проводить исследование на основе применения методов наблюдения и эксперимента.

Коммуникативные УУД:

- самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т.д.);
- формулирует собственное мнение и позицию, аргументирует их;
- устанавливает и сравнивает разные точки зрения, прежде чем принимать решения и делать выбор;
- осуществляет взаимный контроль и оказывает в сотрудничестве необходимую взаимопомощь;
- организовывает и планирует учебное сотрудничество с учителем и сверстниками; определять цели и функции участников, способы взаимодействия; планировать общие способы работы;
- умеет работать в группе устанавливает рабочие отношения, эффективно сотрудничает и способствует продуктивной кооперации; интегрируется в группу сверстников и строит продуктивное взаимодействие со сверстниками и взрослыми;
- учитывать разные мнения и интересы и обосновывать собственную позицию.

В программе учитывается реализация **межпредметных** связей с курсом физики (7 класс) и биологии (6-7 классы), где дается знакомство с строением атома, химической организацией клетки и процессами обмена веществ.

Предметные результаты по учебному предмету «Химия» на уровне основного общего образования обеспечивают:

В познавательной сфере:

Знание (понимание):

- химической символики: знаков химических элементов, формул химических веществ, уравнений химических реакций;
- важнейших химических понятий: вещество, химический элемент, атом, молекула, относительные атомная и молекулярная массы, ион, катион, анион, химическая связь, электроотрицательность, валентность, степень окисления, моль, молярная масса, молярный объем, растворы, электролиты и неэлектролиты, электролитическая диссоциация, окислитель и восстановитель, окисление и восстановление, тепловой эффект реакции, основные типы реакций в неорганической химии;
- формулировок основных законов и теорий химии: атомно-молекулярного учения; законов сохранения массы веществ, постоянства состава веществ, Авогадро; Периодического закона Д. И. Менделеева; теории строения атома и учения о строении вещества; теории электролитической диссоциации и учения о химической реакции.

Умение называть:

- химические элементы;
- соединения изученных классов неорганических веществ;
- органические вещества по их формуле: метан, этан, этилен, ацетилен, метанол, глицерин, уксусная кислота, глюкоза, сахароза.

Объяснение:

- физического смысла атомного (порядкового) номера химического элемента, номеров группы и периода в Периодической системе Д.И. Менделеева, к которым элемент принадлежит;
- закономерностей изменения строения атомов, свойств элементов в пределах малых периодов и А групп, а также свойств образуемых ими высших оксидов и гидроксидов;
 - сущности процесса электролитической диссоциации и реакций ионного обмена. Умение характеризовать:

- химические элементы (от водорода до кальция) на основе их положения в Периодической системе химических элементов Д.И. Менделеева и особенностей строения их атомов;
 - взаимосвязь между составом, строением и свойствами неорганических веществ;
- химические свойства основных классов неорганических веществ (оксидов, кислот, оснований, амфотерных соединений и солей).

Определение:

- состава веществ по их формулам;
- валентности и степени окисления элементов в соединении;
- видов химической связи в соединениях;
- типов кристаллических решеток твердых веществ;
- принадлежности веществ к определенному классу соединений;
- типов химических реакций;
- возможности протекания реакций ионного обмена.

Составление:

- схем строения атомов первых 20 элементов Периодической системы Д.И. Менделеева;
- формул неорганических соединений изученных классов;
- уравнений химических реакций.

Безопасное обращение с химической посудой и лабораторным оборудованием.

Проведение химического эксперимента:

- подтверждающего химические свойства изученных классов неорганических веществ;
- подтверждающего химический состав неорганических соединений;
- по получению, собиранию и распознаванию газообразных веществ (кислорода, водорода, углекислого газа, аммиака);
- по определению хлорид-, сульфат-, карбонат-ионов и иона аммония с помощью качественных реакций.

Вычисление:

- массовой доли химического элемента по формуле соединения;
- массовой доли вещества в растворе;
- массы основного вещества по известной массовой доле примесей;
- объемной доли компонента газовой смеси;
- количества вещества, объема или массы вещества по количеству вещества, объему или массе реагентов или продуктов реакции.

Использование приобретенных знаний и умений в практической деятельности и повседневной жизни:

- для безопасного обращения с веществами и материалами в повседневной жизни и грамотного оказания первой помощи при ожогах кислотами и щелочами;
 - -для объяснения отдельных фактов и природных явлений;
 - для критической оценки информации о веществах, используемых в быту.

В ценностно-ориентационной сфере

Анализ и оценка последствий для окружающей среды бытовой и производственной деятельности человека, связанной с получением и переработкой веществ.

В трудовой сфере

Проведение операций с использованием нагревания, отстаивания, фильтрования, выпаривания; получения, собирания, распознавания веществ; изготовления моделей молекул.

В сфере безопасности жизнедеятельности

- соблюдение правил техники безопасности при проведении химического эксперимента;
- оказание первой помощи при ожогах, порезах и химических травмах.

1)определение характера среды в растворах кислот и щелочей; изучение взаимодействия кислот с металлами, оксидами металлов, растворимыми и нерастворимыми основаниями, солями; получение нерастворимых оснований; вытеснение одного металла другим из раствора соли; исследование амфотерных свойств гидроксидов алюминия и цинка; решение экспериментальных задач по теме "Основные классы неорганических соединений"; представление о закономерностях и познаваемости явлений природы, понимание объективной значимости основ химической науки как области современного естествознания, компонента

общей культуры и практической деятельности человека в условиях современного общества; понимание места химии среди других естественных наук;

- 2) владение основами понятийного аппарата и символического языка химии для составления формул неорганических веществ, уравнений химических реакций; владение основами химической номенклатуры (IUPAC и тривиальной) и умение использовать ее для решения учебно-познавательных задач; умение использовать модели для объяснения строения атомов и молекул;
- 3) владение системой химических знаний и умение применять систему химических знаний, которая включает: важнейшие химические понятия: химический элемент, атом, молекула, вещество, простое и сложное вещество, однородная и неоднородная смесь, относительные атомная и молекулярная массы, количество вещества, моль, молярная масса, молярный объем, оксид, кислота, основание, соль (средняя), химическая реакция, реакции соединения, реакции разложения, реакции замещения, реакции обмена, тепловой эффект реакции, экзо- и эндотермические реакции, раствор, массовая доля химического элемента в соединении, массовая доля и процентная концентрация вещества в растворе,
- ядро атома, электрический слой атома, атомная орбиталь, радиус атома, валентность, степень окисления, химическая связь, электроотрицательность, полярная и неполярная ковалентная связь, ионная связь, металлическая связь, кристаллическая решетка (атомная, ионная, молекулярная), ион, катион, анион, электролит металлическая, электролитическая диссоциация, реакции ионного обмена, окислительно-восстановительные реакции, окислитель и восстановитель, окисление и восстановление, электролиз, химическое равновесие, обратимые и необратимые реакции, скорость химической реакции, катализатор, предельно допустимая концентрация (ПДК), коррозия металлов, сплавы; основополагающие законы химии: закон сохранения массы, периодический закон Д.И. Менделеева, закон постоянства состава, закон Авогадро; теории химии: атомно-молекулярная теория, теория электролитической диссоциации, представления о научных методах познания, в том числе экспериментальных и теоретических методах исследования веществ и изучения химических реакций;
- 4) представление о периодической зависимости свойств химических элементов (радиус атома, электроотрицательность), простых и сложных веществ от положения элементов в Периодической системе (в малых периодах и главных подгруппах) и электронного строения атома; умение объяснять связь положения элемента в Периодической системе с числовыми характеристиками строения атомов химических элементов (состав и заряд ядра, общее число электронов), распределением электронов по энергетическим уровням атомов первых трех периодов, калия и кальция; классифицировать химические элементы;
- 5) умение классифицировать химические элементы, неорганические вещества и химические реакции; определять валентность и степень окисления химических элементов, вид химической связи и тип кристаллической структуры в соединениях, заряд иона, характер среды в водных растворах веществ (кислот, оснований), окислитель и восстановитель;
- 6) умение характеризовать физические и химические свойства простых веществ (кислород, озон, водород, графит, алмаз, кремний, азот, фосфор, сера, хлор, натрий, калий, магний, кальций, алюминий, железо) и сложных веществ, в том числе их водных растворов (вода, аммиак, хлороводород, сероводород, оксиды и гидроксиды металлов I IIA групп, алюминия, меди (II), цинка, железа (II и III), оксиды углерода (II и IV), кремния (IV), азота и фосфора (III и V), серы (IV и VI), сернистая, серная, азотистая, азотная, фосфорная, угольная, кремниевая кислота и их соли); умение прогнозировать и характеризовать свойства веществ в зависимости от их состава и строения, применение веществ в зависимости от их свойств, возможность протекания химических превращений в различных условиях, влияние веществ и химических процессов на организм человека и

окружающую природную среду;

7) умение составлять молекулярные и ионные уравнения реакций (в том числе реакций ионного обмена и окислительно-восстановительных реакций), иллюстрирующих химические свойства изученных классов/групп неорганических веществ, в том числе подтверждающих генетическую взаимосвязь между ними;

- 8) умение вычислять относительную молекулярную и молярную массы веществ, массовую долю химического элемента в соединении, массовую долю вещества в растворе, количество вещества и его массу, объем газов; умение проводить расчеты по уравнениям химических реакций и находить количество вещества, объем и массу реагентов или продуктов реакции;
- 9) владение основными методами научного познания (наблюдение, измерение, эксперимент, моделирование) при изучении веществ и химических явлений; умение сформулировать проблему и предложить пути ее решения; знание основ безопасной работы с химическими веществами, химической посудой и лабораторным оборудованием;
- 10) наличие практических навыков планирования и осуществления следующих химических экспериментов: изучение и описание физических свойств веществ; ознакомление с физическими и химическими явлениями; опыты, иллюстрирующие признаки протекания химических реакций; изучение способов разделения смесей; получение кислорода и изучение его свойств; получение водорода и изучение его свойств;

получение углекислого газа и изучение его свойств; получение аммиака и изучение его свойств; приготовление растворов с определенной массовой долей растворенного

вещества; исследование и описание свойств неорганических веществ различных

классов; применение индикаторов (лакмуса, метилоранжа и фенолфталеина) для решения экспериментальных задач по теме "Электролитическая диссоциация"; решение экспериментальных задач по теме "Важнейшие неметаллы и их соединения";

решение экспериментальных задач по теме "Важнейшие металлы и их соединения";

химические эксперименты, иллюстрирующие признаки протекания реакций ионного обмена; качественные реакции на присутствующие в водных растворах ионы: хлорид-, бромид-, иодид-, сульфат-, фосфат-, карбонат-, силикат-анионы, гидроксид-ионы, катионы аммония, магния, кальция, алюминия, железа (2+) и железа (3+), меди (2+), цинка; умение представлять результаты эксперимента в форме выводов, доказательств, графиков и таблиц и выявлять эмпирические закономерности;

- 11) владение правилами безопасного обращения с веществами, используемыми в повседневной жизни, правилами поведения в целях сбережения здоровья и окружающей природной среды; понимание вреда (опасности) воздействия на живые организмы определенных веществ, способов уменьшения и предотвращения их вредного воздействия; понимание значения жиров, белков, углеводов для организма человека;
- 12) владение основами химической грамотности, включающей умение правильно использовать изученные вещества и материалы (в том числе минеральные удобрения, металлы и сплавы, продукты переработки природных источников углеводородов (угля, природного газа, нефти) в быту, сельском хозяйстве, на производстве;
- 13) умение устанавливать связи между реально наблюдаемыми химическими явлениями и процессами, происходящими в макро- и микромире, объяснять причины многообразия веществ; умение интегрировать химические знания со знаниями других учебных предметов;
- 14) представление о сферах профессиональной деятельности, связанных с химией и современными технологиями, основанными на достижениях химической науки, что позволит обучающимся рассматривать химию как сферу своей будущей профессиональной деятельности и сделать осознанный выбор химии как профильного предмета при переходе на уровень среднего общего образования;
- 15) наличие опыта работы с различными источниками информации по химии (научная и научно-популярная литература, словари, справочники, интернет-ресурсы); умение объективно оценивать информацию о веществах, их превращениях и практическом применении.

Содержание курса химии 7 КЛАСС

Пропедевтический курс

Химия в центре естествознания

Химия как часть естествознания. Предмет химии. Естествознание – комплекс наук о природе: физики, химии, биологии и географии. Положительное и отрицательное воздействие человека на природу.

Предмет химии. Тела и вещества. Свойства веществ как их индивидуальные признаки. Свойства веществ как основа их применения.

Методы изучения естествознания. Наблюдение как основной метод познания окружающего мира. Условия проведения наблюдения. Гипотеза как предположение, объясняющее или предсказывающее протекание наблюдаемого явления. Эксперимент. Лаборатория. Эксперимент лабораторный и домашний. Способы фиксирования результатов эксперимента. Строение пламени свечи, сухого горючего, спиртовки.

Практическая работа «Знакомство с лабораторным оборудованием. Правила техники безопасности при работе в химическом кабинете (лаборатории)».

Практическая работа «Наблюдение за горящей свечой. Устройство спиртовки. Правила работы с нагревательными приборами».

Моделирование. Модели как абстрагированные копии изучаемых объектов и процессов. Модели в физике. Электрофорная машина как абстрагированная модель молнии. Модели в биологии. Биологические муляжи. Модели в химии: материальные (модели атомов, молекул, кристаллов, аппаратов и установок) и знаковые (химические знаки, химические формулы и химические уравнения).

Химическая символика. Химические знаки. Их обозначение, произношение и информация, которую они несут. Химические формулы. Их обозначение, произношение и информация, которую они несут. Индексы и коэффициенты.

Химия и физика. Универсальный характер положений молекулярно-кинетической теории. Понятия «атом», «молекула», «ион». Кристаллическое состояние вещества. Кристаллические решетки твердых веществ. Диффузия. Броуновское движение.

Химия и физика. Агрегатные состояния вещества. Понятие об агрегатном состоянии вещества. Газообразные, жидкие и твердые вещества. Кристаллические и аморфные твердые вещества. Физические и химические явления.

Химия и география. Геологическое строение планеты Земля: ядро, мантия, литосфера. Элементный состав геологических составных частей планеты. Минералы и горные породы. Магматические и осадочные (органические и неорганические, в том числе и горючие) породы.

Химия и биология. Химический состав живой клетки: неорганические (вода и минеральные соли) и органические (белки, жиры, углеводы, витамины) вещества.

Простые и сложные вещества, их роль в жизнедеятельности организмов.

Биологическая роль воды в живой клетке. Фотосинтез. Роль хлорофилла в фотосинтезе. Биологическое значение жиров, белков, эфирных масел, углеводов и витаминов для жизнедеятельности организмов.

Качественные реакции в химии. Понятие о качественных реакциях как о реакциях, воспринимаемых органолептически с помощью зрения, слуха, обоняния. Аналитический эффект. Определяемое вещество и реактив на него. Возможность изменения роли на противоположную. Распространение запаха одеколона, духов или дезодоранта как процесс диффузии. Образцы твердых веществ кристаллического строения. Модели кристаллических решеток.

Демонстрации. Коллекция разных тел из одного вещества или материала (например, стекла — лабораторная посуда). Коллекция различных тел или фотографий тел из алюминия для иллюстрации идеи «свойства — применение». Учебное оборудование, используемое при изучении физики, биологии, географии и химии. Электрофорная машина в действии. Географические модели (глобус, карта). Биологические модели (муляжи органов и систем органов растений, животных и человека). Физические и химические модели атомов, молекул веществ и их кристаллических решеток. Объемные и шаростержневые модели воды, углекислого и сернистого газов, метана. Распространение запаха одеколона, духов или дезодоранта как процесс диффузии. Образцы твердых веществ кристаллического строения. Модели кристаллических решеток. Три агрегатных состояния воды. «Переливание» углекислого газа в стакан на уравновешенных весах. Коллекция кристаллических и аморфных веществ и изделий из них. Коллекция минералов (лазурит, корунд, халькопирит,

флюорит, галит). Коллекция горных пород (гранит, различные формы кальцита — мел, мрамор, известняк). Коллекция горючих ископаемых (нефть, каменный уголь, сланцы, торф). Спиртовая экстракция хлорофилла из зеленых листьев. Качественная реакция на кислород. Качественная реакция на углекислый газ. Качественная реакция на известковую воду.

Лабораторные опыты. Описание свойств кислорода, уксусной кислоты, алюминия. Строение пламени (свечи, спиртовки, сухого горючего). Изготовление моделей молекул химических веществ из пластилина. Наблюдение броуновского движения частичек черной туши под микроскопом. Изучение гранита с помощью увеличительного стекла. Обнаружение жира в семенах подсолнечника и грецкого ореха. Обнаружение эфирных масел в апельсиновой корке. Обнаружение крахмала и белка (клейковины) в пшеничной муке. Пропускание выдыхаемого воздуха через известковую воду.

Математика в химии

Относительные атомная и молекулярная массы. Понятие об относительной атомной и молекулярной массах на основе водородной единицы. Нахождение относительной атомной массы химических элементов по таблице Д. И. Менделеева. Нахождение относительной молекулярной массы по формуле вещества как суммы относительных атомных масс, составляющих вещество химических элементов.

Массовая доля химического элемента в сложном веществе. Понятие о массовой доле химического элемента (*w*) в сложном веществе и ее расчет по формуле вещества. Нахождение формулы вещества по значениям массовых долей образующих его элементов.

Чистые вещества и смеси. Понятие о чистом веществе и о смеси. Смеси газообразные (воздух, природный газ), жидкие (нефть) и твердые (горные породы, кулинарные смеси и СМС). Смеси гомогенные и гетерогенные.

Объемная доля компонента газовой смеси. Понятие об объемной доле (ϕ) компонента газовой смеси. Состав воздуха и природного газа. Расчет объема компонента газовой смеси по его объемной доле и наоборот.

Массовая доля вещества в растворе. Понятие о массовой доле вещества (w) в растворе. Растворитель и растворенное вещество. Расчет массы растворенного вещества по массе раствора и массовой доле растворенного вещества и другие расчеты с использованием этих понятий.

Практическая работа «Приготовление раствора с заданной массовой долей растворенного вещества».

Массовая доля примесей. Понятие о чистом веществе и примеси. Массовая доля примеси (*w*) в образце исходного вещества. Основное вещество. Расчет массы основного вещества по массе вещества, содержащего определенную массовую долю примесей, и другие расчеты с использованием этих понятий.

Демонстрации. Минералы куприт и тенорит. Коллекции различных видов мрамора и изделий (или иллюстраций изделий) из него. Смесь речного и сахарного песка и их разделение. Коллекция нефти и нефтепродуктов. Коллекция бытовых смесей (кулинарных смесей, СМС, шампуней, напитков и др.). Диаграмма объемного состава воздуха. Диаграмма объемного состава природного газа. Образцы веществ и материалов, содержащих определенную долю примесей.

Лабораторные опыты. Изучение состава бытовых кулинарных и хозяйственных смесей по этикеткам. Изучение состава некоторых бытовых и фармацевтических препаратов, содержащих определенную долю примесей по их этикеткам.

Явления, происходящие с веществами

Разделение смесей. Понятие о разделении смесей и очистке веществ. Некоторые простейшие способы разделения смесей: просеивание, разделение смесей порошков железа

и серы, отстаивание, декантация, центрифугирование, разделение с помощью делительной воронки.

Фильтрование. Фильтрование в лаборатории, быту и на производстве. Понятие о фильтрате.

Адсорбция. Понятие об адсорбции и адсорбентах. Активированный уголь как важнейший адсорбент, его использование в быту, на производстве и в военном деле. Устройство противогаза.

Дистилляция. Дистилляция как процесс выделения вещества из жидкой смеси. Дистиллированная вода и области ее применения.

Кристаллизация или выпаривание. Кристаллизация и выпаривание в лаборатории (кристаллизаторы и фарфоровые чашки для выпаривания) и природе. Перегонка нефти. Нефтепродукты. Фракционная перегонка жидкого воздуха.

Практическая работа «Очистка поваренной соли».

Химические реакции. Понятие о химической реакции как процессе превращения одних веществ в другие. Условиятечения и прекращения химических реакций.

Признаки химических реакций. Признаки химических реакций: изменение цвета, выпадение осадка, растворение полученного осадка, выделение газа.

Демонстрации. Просеивание смеси муки и сахарного песка. Разделение смеси порошков серы и железа. Разделение смеси порошков серы и песка. Разделение смеси воды и растительного масла с помощью делительной воронки. Центрифугирование. Фильтрование. Коллекция респираторных масок и марлевых повязок. Адсорбционные свойства активированного угля. Силикагель и его применение в быту и легкой промышленности. Противогаз и его устройство. Получение дистиллированной воды с помощью лабораторной установки для перегонки жидкостей. Разделение смеси перманганата и дихромата калия способом кристаллизации. Коллекция «Нефть и нефтепродукты». Взаимодействие порошков железа и серы при нагревании. Получение углекислого газа взаимодействием мрамора с кислотой и обнаружение его с помощью известковой воды. Каталитическое разложение пероксида водорода (катализатор — диоксид марганца). Ферментативное разложение пероксида водорода с помощью каталазы. Кислотный огнетушитель, его устройство и принцип действия. Реакция нейтрализации окрашенного фенолфталеином раствора щелочи кислотой. Взаимодействие раствора перманганата и дихромата калия с раствором сульфита натрия. Получение осадка гидроксида меди (II) или гидроксида железа (III) реакцией обмена. Растворение полученных осадков гидроксидов металлов кислотой. Получение углекислого газа взаимодействием раствора карбоната натрия с кислотой.

Лабораторные опыты. Разделение смеси сухого молока и речного песка. Изготовление фильтра из фильтровальной бумаги или бумажной салфетки. Изготовление марлевых повязок как средства индивидуальной защиты в период эпидемии гриппа. Изучение состава и применения синтетических моющих средств, содержащих энзимы. Изучение устройства зажигалки и ее пламени.

Рассказы по химии

Рассказы об ученых. Выдающиеся русские ученые-химики: жизнь и деятельность М. В. Ломоносова, Д. И. Менделеева, А. М. Бутлерова.

Рассказы об элементах и веществах. Металлы: алюминий, железо, золото. Неметаллы: азот, водород. Вода. Хлорид натрия. Карбонат кальция.

Рассказы о реакциях. Фотосинтез. Горение. Коррозия металлов.

Практическая работа (домашний эксперимент) «Выращивание кристаллов соли».

Практическая работа (домашний эксперимент) «Коррозия металлов».

8 КЛАСС

Начальные понятия и законы химии

Тела и вещества. Свойства веществ. Эталонные физические свойства веществ. Материалы и материаловедение. Роль химии в жизни современного общества. Отношение общества к химии: хемофилия и хемофобия.

Методы изучения химии. Наблюдение. Эксперимент Моделирование. Модели материальные и знаковые или символьные.

Газы. Жидкости. Твёрдые вещества. Взаимные переходы между агрегатными состояниями вещества: возгонка (сублимация) и десублимация, конденсация и испарение, кристаллизация и плавление.

Физические явления. Чистые вещества и смеси. Гомогенные и гетерогенные смеси. Смеси газообразные, жидкие и твёрдые. Способы разделения смесей: перегонка, или дистилляция, отстаивание, фильтрование, кристаллизация или выпаривание. Хроматография. Применение этих способов в лабораторной практике, на производстве и в быту.

Химические элементы. Атомы и молекулы. Простые и сложные вещества. Аллотропия на примере кислорода. Основные положения атомно-молекулярного учения. Ионы. Вещества молекулярного и немолекулярного строения.

Знаки (символы) химических элементов. Информация, которую несут знаки химических элементов. Этимология названий некоторых химических элементов. Периодическая таблица химических элементов Д. И. Менделеева: короткопериодный и длиннопериодный варианты. Периоды и группы. Главная и побочная подгруппы, или А- и Б-группы. Относительная атомная масса.

Химические формулы. Индексы и коэффициенты. Относительная молекулярная масса. Массовая доля химического элемента в соединении. Информация, которую несут химические формулы.

Валентность. Структурные формулы. Химические элементы с постоянной и переменной валентностью. Вывод формулы соединения по валентности. Определение валентности химического элемента по формуле вещества. Составление названий соединений, состоящих из двух химических элементов, по валентности. Закон постоянства состава веществ.

Химические реакции. Реагенты и продукты реакции. Признаки химических реакций. Условия их протекания и прекращения. Реакции горения. Экзотермические и эндотермические реакции.

Закон сохранения массы веществ. Химические уравнения. Составление химических уравнений. Информация, которую несёт химическое уравнение.

Классификация химических реакций по составу и числу реагентов и продуктов. Типы химических реакций. Реакции соединения, разложения, замещения и обмена. Катализаторы и катализ.

Лабораторные опыты

- Ознакомление с коллекцией лабораторной посуды.
- Проверка герметичности прибора для получения газов.
- Ознакомление с минералами, образующими гранит.
- Приготовление гетерогенной смеси порошков серы с железом и их разделение.
- Взаимодействие растворов хлоридов и иодидов калия с раствором нитрата серебра.
- Получение гидроксида меди(II) и его взаимодействие с серной кислотой.
- Взаимодействие раствора соды с кислотой.
- Проверка закона сохранения массы веществ на примере взаимодействия щёлочи с кислотой.
- Проверка закона сохранения массы веществ на примере взаимодействия щёлочи с солью железа(III).
- Разложение пероксида водорода с помощью оксида марганца (IV). 11.Замещение железом меди в медном купоросе.

Практические работы

- 1. Правила техники безопасности и некоторые виды работ в химической лаборатории (кабинете химии).
 - 2. Наблюдение за горящей свечой.
 - 3. Анализ почвы(аналог работы «Очистка поваренной соли»).

Важнейшие представители неорганических веществ. Количественные отношения в химии

Состав воздуха. Понятие об объёмной доле (ϕ) компонента природной газовой смеси — воздуха. Расчёт объёма компонента газовой смеси по его объёмной доле и наоборот.

Кислород. Озон. Получение кислорода. Собирание и распознавание кислорода. Химические свойства кислорода: взаимодействие с металлами, неметаллами и сложными веществами. Применение кислорода. Круговорот кислорода в природе.

Оксиды. Образование названий оксидов по их формулам. Составление формул оксидов по их названиям. Представители оксидов: вода и углекислый газ, негашёная известь.

Водород в природе. Физические и химические свойства водорода, его получение и применение.

Кислоты, их состав и их классификация. Индикаторы. Таблица растворимости. Серная и соляная кислоты, их свойства и применение.

Соли, их состав и названия. Растворимость солей в воде. Представители солей: хлорид натрия, карбонат натрия, фосфат кальция.

Постоянная Авогадро. Количество вещества. Моль. Молярная масса. Кратные единицы измерения количества вещества — миллимоль и киломоль, миллимолярная и киломолярная массы вещества.

Расчёты с использованием понятий «количество вещества», «молярная масса», «постоянная Авогадро».

Закон Авогадро. Молярный объём газообразных веществ. Относительная плотность газа по другому газу.

Кратные единицы измерения — миллимолярный и киломолярный объемы газообразных веществ.

Расчёты с использованием понятий «количество вещества», «молярная масса», «молярный объём газов», «число Авогадро».

Гидросфера. Круговорот воды в природе. Физические и химические свойства воды: взаимодействие с оксидами.

Основания, их состав. Растворимость оснований в воде. Изменение окраски индикаторов в щелочной среде. Представители щелочей: гидроксиды натрия, калия и кальция.

Растворитель и растворённое вещество. Растворы. Растворение. Гидраты. Массовая доля растворённого вещества. Расчёты, связанные с использованием понятия «массовая доля растворённого вещества».

Основные классы неорганических соединений

Обобщение сведений об оксидах, их классификации, названиях и свойствах. Способы получения оксидов

Основания, их классификация, названия и свойства. Взаимодействие с кислотами, кислотными оксидами и солями. Разложение нерастворимых оснований. Способы получения оснований.

Кислоты, их классификация и названия. Общие химические свойства кислот. Взаимодействие кислот с металлами. Электрохимический ряд напряжений металлов. Взаимодействие кислот с оксидами металлов. Взаимодействие кислот с основаниями — реакция нейтрализации. Взаимодействие кислот с солями. Получение бескислородных и кислородсодержащих кислот.

Соли, их классификация и свойства. Взаимодействие солей с металлами, особенности этих реакций. Взаимодействие солей с солями.

Генетические ряды металла и неметалла. Генетическая связь между классами неорганических веществ.

Практические работы

Решение экспериментальных задач по теме «Основные классы неорганических соединений».

Периодический закон и периодическая система химических элементов Д.И. Менделеева. Строение атома

Естественные семейства химических элементов: щелочные и щелочноземельные металлы, галогены, инертные (благородные) газы. Амфотерность. Амфотерные оксиды и гидроксиды. Комплексные соли.

Открытие Д. И. Менделеевым периодического закона и создание им периодической системы химических элементов.

Атомы как форма существования химических элементов. Основные сведения о строении атомов. Доказательства сложности строения атомов. Опыты Резерфорда. Планетарная модель строения атома.

Состав атомных ядер: протоны, нейтроны. Относительная атомная масса. Взаимосвязь понятий «протон», «нейтрон», «относительная атомная масса».

Микромир. Электроны. Строение электронных уровней атомов химических элементов 1—20. Понятие о завершённом электронном уровне.

Изотопы. Физический смысл символики Периодической системы. Современная формулировка периодического закона. Изменения свойств элементов в периодах и группах как функция строения электронных оболочек атомов.

Характеристика элемента-металла и элемента-неметалла по их положению в периодической системе химических элементов Д. И. Менделеева.

Демонстрации

- Различные формы таблиц периодической системы.
- Моделирование построения периодической системы Д. И. Менделеева.
- Модели атомов химических элементов.
- Модели атомов элементов 1—3-го периодов.

Лабораторные опыты

• Получение амфотерного гидроксида и исследование его свойств.

Химическая связь. Окислительно-восстановительные реакции

Ионная химическая связь. Ионы, образованные атомами металлов и неметаллов. Схемы образования ионной связи для бинарных соединений. Ионные кристаллические решётки и физические свойства веществ с этим типом решёток. Понятие о формульной единице вещества.

Ковалентная химическая связь. Электронные и структурные формулы. Понятие о валентности. Ковалентная неполярная связь. Схемы образования ковалентной связи для бинарных соединений. Молекулярные и атомные кристаллические решётки и свойства веществ с этим типом решёток.

Электроотрицательность. Ряд электроотрицательности. Ковалентная полярная химическая связь. Диполь. Схемы образования ковалентной полярной связи для бинарных соединений. Молекулярные и атомные кристаллические решётки и свойства веществ с этим типом решёток.

Металлическая химическая связь и металлическая кристаллическая решётка. Свойства веществ с этим типом решёток. Единая природа химических связей.

Степень окисления. Сравнение степени окисления и валентности. Правила расчёта степеней окисления по формулам химических соединений.

Окислительно-восстановительные реакции. Определение степеней окисления для элементов, образующих вещества разных классов. Реакции ионного обмена и окислительно-восстановительные реакции. Окислитель и восстановитель, окисление и восстановление. Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

9 КЛАСС

Бинарные соединения. Оксиды солеобразующие и несолеобразующие. Гидроксиды: основания, амфотерные гидроксиды, кислородсодержащие кислоты. Средние, кислые, основные и комплексные соли.

Обобщение сведений о химических реакциях. Классификация химических реакций по различным признакам: составу и числу реагирующих и образующихся веществ, тепловому эффекту, обратимости, изменению степеней окисления элементов, образующих реагирующие вещества, агрегатному состоянию реагирующих веществ, использованию катализатора.

Понятие о скорости химической реакции. Факторы, влияющие на скорость химических реакций: природа реагирующих веществ, их концентрация, температура, площадь соприкосновения, наличие катализатора. Катализ.

Химические реакции в растворах электролитов

Понятие об электролитической диссоциации. Электролиты и неэлектролиты. Механизм диссоциаций электролитов с различным характером связи. Степень электролитической диссоциации. Сильные и слабые электролиты.

Основные положения теории электролитической диссоциации. Классификация ионов и их свойства. Кислоты, основания и соли как электролиты. Их классификация и диссоциация.

Общие химические свойства кислот: изменение окраски индикаторов, взаимодействие с металлами, оксидами и гидроксидами металлов и солями. Молекулярные и ионные (полные и сокращённые) уравнения реакций. Химический смысл сокращённых уравнений. Условия протекания реакций между электролитами до конца. Ряд активности металлов.

Общие химические свойства щелочей: взаимодействие с кислотами, оксидами неметаллов, солями. Общие химические свойства нерастворимых оснований: взаимодействие с кислотами, разложение при нагревании.

Общие химические свойства средних солей: взаимодействие с кислотами, щелочами, солями и металлами. Взаимодействие кислых солей со щелочами.

Гидролиз как обменное взаимодействие солей с водой. Гидролиз соли сильного основания и слабой кислоты. Гидролиз соли слабого основания и сильной кислоты. Водородный показатель(pH).

Свойства кислот, оснований, оксидов и солей в свете теории электролитической диссоциации и представлений об окислительно-восстановительных реакциях.

Практические работы

1. Решение экспериментальных задач по теме «Электролитическая диссоциация».

Неметаллы и их соединения

Строение атомов неметаллов и их положение в периодической системе. Ряд электроотрицательности. Кристаллические решётки неметаллов — простых веществ. Физические свойства неметаллов. Общие химические свойства неметаллов: окислительные и восстановительные.

Галогены, строение их атомов и молекул. Физические и химические свойства галогенов. Закономерности изменения свойств галогенов в зависимости от их положения в периодической системе. Нахождение галогенов в природе и их получение. Биологическое значение и применение галогенов.

Галогеноводороды и соответствующие им кислоты: плавиковая, соляная, бромоводородная, иодоводородная. Галогениды. Качественные реакции на галогенид-ионы. Применение соединений галогенов.

Общая характеристика элементов VIA-группы. Сера в природеи её получение. Аллотропные модификации серы и их свойства. Химические свойства серы и её применение.

Сероводород: строение молекулы, физические и химические свойства, получение и значение. Сероводородная кислота. Сульфиды и их значение. Люминофоры.

Оксид серы(IV), сернистая кислота, сульфиты. Качественная реакция на сульфит-ион.

Оксид серы(VI), серная кислота, сульфаты. Кристаллогидраты.

Серная кислота как сильный электролит. Свойства разбавленной серной кислоты как типичной кислоты: взаимодействие с металлами, основными и амфотерными оксидами, основаниями и амфотерными гидроксидами, солями. Качественная реакция на сульфат-ион.

Общая характеристика элементов VA-группы. Азот, строение его атома и молекулы. Физические и химические свойства и применение азота. Азот в природе и его биологическая роль.

Аммиак, строение молекулы и физические свойства. Аммиачная вода, нашатырный спирт, гидрат аммиака. Донорно-акцепторный механизм образования связи в катионе аммония. Восстановительные свойства аммиака. Соли аммония и их применение. Качественная реакция на катион аммония.

Оксиды азота: несолеобразующие и кислотные. Азотистая кислота и нитриты. Азотная кислота, её получение и свойства. Нитраты.

Фосфор, строение атома и аллотропия. Фосфиды. Фосфин. Оксид фосфора(V) и фосфорная (ортофосфорная) кислота. Фосфаты.

Общая характеристика элементов IVA-группы: особенности строения атомов, простых веществ и соединений в зависимости от положения элементов в периодической системе. Углерод. Аллотропные модификации: алмаз, графит. Аморфный углерод: сажа, активированный уголь. Адсорбция. Химические свойства углерода. Коксохимическое производство и его продукция. Карбиды.

Оксид углерода(II): строение молекулы, получение и свойства. Оксид углерода(IV): строение молекулы, получение и свойства. Угольная кислота. Соли угольной кислоты: карбонаты и гидрокарбонаты. Техническая и пищевая сода.

Органическаяхимия. Углеводороды.

Метан, этан и пропан как предельные (насыщенные) углеводороды. Этилен и ацетилен как непредельные (ненасыщенные) углеводороды. Структурные формулы веществ. Горение углеводородов. Реакции дегидрирования предельных углеводородов.

Спирты. Этиловый спирт, его получение, применение и физиологическое действие. Трёхатомный спирт глицерин. Уксусная кислота как представитель карбоновых кислот.

Кремний: строение атома и нахождение в природе. Силициды и силан. Свойства кремния. Оксид кремния(IV). Кремниевая кислота и её соли.

Производство стекла и цемента. Продукция силикатной промышленности: оптическое волокно, керамика, фарфор, фаянс. Оптическое волокно.

Неметаллы в природе. Фракционная перегонка жидкого воздуха как способ получения кислорода, азота и аргона. Получение фосфора, кремния, хлора, иода. Электролиз растворов.

Получение серной кислоты: сырьё, химизм, технологическая схема, метод кипящего слоя, принципы теплообмена, противотока и циркуляции. Олеум. Производство аммиака: сырьё, химизм, технологическая схема.

Практические работы

Изучение свойств соляной кислоты.

Изучение свойств серной кислоты.

Получение аммиака и изучение его свойств.

Получение углекислого газа. Качественная реакция на карбонат-ионы.

Металлы и их соединения

Положение металлов в периодической системе химических элементов Д. И. Менделеева, строение атомов и кристаллов металлов. Металлическая связь и металлическая кристаллическая решётка. Физические свойства металлов: электро- и теплопроводность, отражающая способность, пластичность. Чёрные и цветныеметаллы.

Металлы как восстановители. Электрохимический ряд напряжений. Взаимодействие металлов с неметаллами, оксидами, кислотами, солями. Алюминотермия.

Общая характеристика элементов IA-группы. Оксиды и гидроксиды щелочных металлов, их получение, свойства, применение. Важнейшие соли щелочных металлов, их значение в природе и жизни человека.

Общая характеристика элементов IIA-группы. Оксиды и гидроксиды щелочноземельных металлов, их получение, свойства и применение. Важнейшие соли щелочноземельных металлов, их значение в природе и жизни человека. Карбонаты и гидрокарбонаты кальция.

Временная и постоянная жёсткость воды. Способы устранения временной жёсткости. Способы устранения постоянной жёсткости.

Соединения алюминия в природе. Химические свойства алюминия. Особенности оксида и гидроксида алюминия как амфотерных соединений. Важнейшие соли алюминия (хлорид, сульфат).

Особенности строения атома железа. Железо в природе. Важнейшие руды железа. Получение чугуна и стали. Оксиды и гидроксиды железа(II) и (III). Соли железа(II) и (III). Обнаружение катионов железа в растворе. Значение соединений железа.

Коррозия газовая (химическая) и электрохимическая. Защита металлов от коррозии. Металлы в природе. Понятие о металлургии. Чёрная и цветная металлургия. Пирометаллургия, гидрометаллургия, электрометаллургия. Доменный процесс. Переработка чугуна в сталь. Электролиз расплавов.

Химия и окружающая среда

Строение Земли: ядро, мантия, земная кора, литосфера, гидросфера, атмосфера. Химический состав Земли. Горные породы. Минералы. Руды. Осадочные горные породы. Полезные ископаемые.

Источники химического загрязнения окружающей среды. Глобальные экологические проблемы человечества: нарушение биогеохимических круговоротов химических элементов, потепление климата, кислотные дожди и др. Озоновые дыры. Международное сотрудничество в области охраны окружающей среды от химического загрязнения. «Зелёная химия».

ЧОУ СШ "АЗИМУТ", Гришина Елизавета Ивановна, Генеральный директор **07.09.2022** 03:40 (MSK), Сертификат 65168301BDAD9A8B44F7DC3306CA46D3